FREE SYMPOSIUM OF AMB. JUAN

Extent of Coverage as of Today

Translate

Friday, November 28, 2014

CLEANING OF COAL INDUSTRY: CARBON CAPTURE & STORAGE: Clean up coal-fired power plants by capturing carbon dioxide & liquefying it for underground storage or commercial use

The key technology needed to drastically reduce CO2 emissions from coal-fired power plants is carbon capture and storage, or CCS. All of the components of this system are in commercial operation today, At this point, they are employed mostly to enhance oil recovery. There are about 4,000 miles of pipeline in the U.S. transporting tens of millions of tons of compressed CO2 annually, mostly from natural wells, for injection into geologic formations to help extract oil. Numerous demonstration projects have shown that captured CO2 also can be safely and effectively stored in deep geologic formations, as most of it will be. Last month brought an important milestone: SaskPower’s Boundary Dam power plant in Canada officially opened as the world’s first commercial-scale coal power plant with CCS. About 90% of the plant’s CO2 is captured and piped about 40 miles for injection into oil fields. Next year, the Mississippi Power unit of Southern Co. will start operating a new clean-coal plant, and construction has just started on a clean-coal power plant in Texas. Other projects are being planned, most prominently in the U.S., U.K. and China. Clean coal will become more common because climate policy will demand cleaner power. For instance, an emissions restriction on coal-fired power plants in Canada was a major driver for the Boundary Dam project. There will be added costs to power providers. But clean coal won’t be so expensive that it can’t compete with renewable or nuclear resources. All three will find significant markets. Yes, clean coal will require massive infrastructure investments on a global scale—but so will a major expansion of renewable-energy projects. For the electricity price of the Cape Wind project in Massachusetts, we could easily build a clean-coal plant with CCS. A recently released assessment of the Intergovernmental Panel on Climate Change showed that clean-coal projects are projected to be competitive in a low-carbon world, and that excluding CCS from a mitigation-technology portfolio would more than double the cost of achieving climate-stabilization goals through 2100. Selling captured carbon for enhanced oil recovery can help reduce the cost of CCS. And new technologies under development could allow carbon to be captured with dramatically lower expenditure of energy. ............................... Why would implementing CCS be so expensive? For starters, capturing and storing the carbon from coal combustion is estimated to consume 25% to 45% of the power produced, depending on the approach taken. That translates to not only higher prices for coal-generated electricity but also the need for more plants to serve the same customers. Other technologies designed to make carbon capture more efficient aren’t commercial at this point, and their full costs are unknown. And there’s more. Capturing and burying just 38% of the carbon released from current U.S. coal combustion would entail pipelines, compressors and pumps on a scale equivalent to the size of the nation’s oil industry. And while bolting CCS technology onto existing power plants is possible, it is inefficient. A new generation of plants would do the job much better—but that means replacing roughly 600 current-generation power plants. Altogether, the Energy Department estimates that wholesale electricity prices with the initial generation of CCS technology would be 70% to 80% higher than current coal-based power. The discussion of CCS technology in a recent assessment by the Intergovernmental Panel on Climate Change contains too many qualifiers to be interpreted as a declaration that clean coal will be competitive with renewable fuels. Long term, the economics of coal are likely to get worse, with or withoutCCS. Coal is nonrenewable, finite in quantity and therefore subject to depletion. Rates of production from most regions of the U.S. are in decline. And as depletion forces the mining of lower-quality resources, production prices will rise because of the need for more-sophisticated extraction technologies. Declining output is inevitable sooner or later. Meanwhile, the price of electricity produced from solar and wind power is steadily dropping. The only thing that keeps coal-based electricity cheap today in relation to power from renewable sources is the industry’s ability to shift the hidden costs—environmental and health damage—onto society. If, as climate regulations inevitably kick in, the coal power industry adopts CCS as a survival strategy, any lingering economic advantage over wind and even solar will disappear. CCS also doesn’t address the full range of coal’s impact on society. It won’t banish high rates of lung disease, because it doesn’t eliminate all the pollutants from the combustion process or deal with the coal dust from mining and transport. It also doesn’t address the environmental devastation of “mountaintop removal” mining. This is not to say that “clean coal” has no future whatever. Coal plants with CCS will be built where captured carbon dioxide can be used to generate extra income—for example, by using it to stimulate old oil wells or make cement. But even a dramatic increase in such uses would put only a small fraction of carbon from coal to work. A full transition of today’s coal power industry to CCS is extremely unlikely unless the economics substantially change for some currently unforeseeable reason. And other technological advances, like more-efficient coal-fired plants, can only slow the growth of harmful emissions at best. In all likelihood, the real future lies elsewhere—with distributed renewable energy. Mr. Heinberg is a senior fellow-in-residence at the Post Carbon Institute, an advocate for renewable fuels. He can be reached at reports@wsj.com. Source: http://online.wsj.com/articles/does-clean-coal-technology-have-a-future-1416779351

Sailing for Peace Coffee Talk

Sailing for Peace Coffee Talk
Climate Change Peace Building Adaptation Information Campaign Worldwide

Search This Blog

Blog Archive